Bis(chlorine)-1,4-diazabicyclo[2.2.2]octane: a novel and reusable oxidising agent for conversion of alcohols into their carbonyl compounds under microwave irradiation

Mahmood Tajbakhsh* and Setareh Habibzadeh

University of Mazandaran, Babolsar, Iran

JOURNAL OF CHEMICAL RESEARCH 2006

Bis(chlorine)-1,4-diazabicyclo[2.2.2]octane was easily prepared by treatment of chlorine gas with 1,4-diazabicyclo [2.2.2]octane at room temperature. It is stable and can be used as an efficient oxidant for aliphatic and aromatic alcohols under microwave irradiation. In the oxidation reactions it is almost quantitatively converted into 1,4-diazabicyclo[2.2.2]octane which can be chlorinated and reused several times.

Keywords: oxidation; alcohols, bis(chlorine)-1,4-diazabicyclo[2.2.2]octane, carbonyl compounds, microwave

The oxidation of alcohols plays an important role in organic synthesis while the development of new oxidative processes continues to draw attention in spite of the availability of numerous oxidising reagents.1 Many of these oxidising reagents used in stoichiometric amounts are often hazardous or toxic. Hence, in terms of economical and environmental concern, catalytic oxidation processes with inexpensive and environmentally benign oxidants are extremely valuable. Also forming aldehydes and ketones is a chemical transformation of primary industrial importance in the fine chemical industry as carbonyl compounds are precursors of a variety of valuable fine chemicals including fragrances, vitamins and drugs.2 Reagents of choice for oxidation of alcohols to carbonyl compounds are pyridinium chlorochromate (PCC),³ Swern⁴ and Dess-Martin reagents,⁵ PCC catalysed oxidation with periodic acid,6 silica gel supported InBr₃ and InCl₃,7 H₂O₂, 8 KBrO₃/ZrClO₂, 9 ruthenium catalyst, 10 etc. 11 In recent developments, the use of microwave irradiation has become a very popular tool to simplify and improve organic reactions, because the desired product is often obtained in high yield and in shorter reaction times. Furthermore, the reactions might be performed under solvent-free conditions and therefore be considered green chemistry. 12,13

Results and discussion

In our ongoing programme to find new oxidants for organic materials, 14,15 we now report the preparation of bis(chlorine)-1,4-diazabicyclo[2.2.2]octane as a new efficient and reusable reagent for the oxidation of alcohols under microwave irradiation and under solvent-free conditions. This complex is easily prepared by treatment of 1,4-diazabicyclo[2.2.2] octane in CHCl₃ with chlorine gas at room temperature. The structure of this complex was determined by CHN analysis and a titration method.16 The Cl+ content was measured by the titration method and the amount of Cl⁺ and Cl⁻ together by the combustion analysis. The bis(chlorine)-1,4-diazabicyclo[2.2.2]octane is a homogenous solid, which can be kept for months in a vessel without losing its activity. It does not release chlorine during storage, as its analysis after two months showed no loss of chlorine. It had no offensive odour of chlorine or amine.

To gain some preliminary information on this synthetically useful reaction, benzyl alcohol was chosen as model substrate. We have studied the influence of mole ratio of oxidant to substrate and the reaction gave high yields with a molar ratio of 1:1 substrate: reagent under microwave irradiation (Scheme 1). In order to establish the generality of this method we have oxidised different alcohols with bis(chlorine)-1,4diazabicyclo[2.2.2]octane without solvent, and the results are shown in Table 1.

As indicated in Table 1, primary aromatic (entries 1-6 and 13–15), primary aliphatic (entry 8), secondary aliphatic (entries 7 and 16) and allyl alcohols (entries 9 and 10) were successfully oxidised with this complex in high yield. The reaction works well with sterically hindered alcohols such as menthol (entry 11) or 2-adamantanol (entry 12). The 2-adamantanol required longer reaction times for the same amount of conversion than did other cyclic alcohols. In no reactions did we observe any over-oxidation products. Another interesting feature of this method was the recovery of 1,4-diazabicyclo[2.2.2]octane in nearly quantitative amount which can easily be chlorinated and reused several times. In order to investigate the applicability of this procedure in industry, we have carried out the oxidation of benzyl alcohol under our optimum reaction conditions on large scale (30 mmol) and obtained almost the same yields as in the small-scale reaction.

Experimental

All the alcohols were purchased from Fluka and Merk companies. The reaction was monitored by TLC using silica gel plates and the products were identified by comparison of their spectra and physical data with those of the authentic samples. ¹H NMR spectra were measured at 300 MHz on a JEOL spectrometer with tetramethylsilane (Me₄Si) as an internal reference and CDCl₃ as the solvent for aldehydes. IR spectra were recorded on Pye-unicam SP 1100 spectrophotometer. Elemental analysis was performed on a LECO 250 instrument. The microwave oven was a domestic National.

Preparation of bis(chlorine)-1,4-diazabicyclo[2.2.2] octane: Chlorine gas was bubbled for 1 h at room temperature through a solution of 1,4-diazabicyclo[2.2.2]octane (6.72 g, 60 mmol) in chloroform (100 ml). The solvent was evaporated under reduced pressured to afford almost pure product (98%), m.p.: decomp. 125-130°C. Anal. Calcd for C₆H₁₂N₂Cl₄: C, 28.3; H, 4.7; N, 11.0; Cl, 55.9. Found: C, 27.9; H, 4.6; N, 11.2; Cl, 55.6. ¹H NMR (D₂O) δ 3.2 (s, 12H, 6CH₂). ¹³C NMR (D₂O) δ 91.3. IR 2800, 1500, 1380, 1000 and 750 cm⁻¹.

$$\begin{array}{c|c} & Cl_2 \\ \hline N & Cl_2 \\ \hline \end{array} \rightarrow 2 \ Cl_2 \ DABCO - Complex \\ \hline \begin{array}{c} & Alcohols \\ \hline MW \ irradiation, \ 80-96\% \ yield \\ \end{array} \\ \begin{array}{c} & Carbonyl \ compounds + \\ \hline N \\ \hline \end{array}$$

Scheme 1

^{*} Correspondent. E-mail: tajbaksh@umz.ac.ir

 Table 1
 Oxidation of alcohols to aldehydes and ketones with the bis(chlorine)-1,4-diazabicyclo[2.2.2]octane

Entry	Substrate	Reaction time/min	th the bis(chlorine)-1,4-diazabicy Product ^a	Yield/% ^b	Ref.
1	CH₂OH	2	СНО	95	17a
2	Br——CH ₂ OH	4	Вг——СНО	93	17b
3	CH ₂ OH	4	СІ	95	17c
4	меО——СН ₂ ОН	3	МеО——СНО	87	17d
5	$O_2N - \hspace{-1em} -\hspace{-1em} - \hspace{-1em} $	6	O_2 N——CHO	90	17e
6	CH ₂ OH	3	СНО	96	17f
7	ОН	2	o	80	17g
8	CH ₃ (CH ₂) ₄ CH ₂ OH	2	CH ₃ (CH ₂) ₄ CHO	90	17h
9	H_2C — $CHCH_2OH$	3	H ₂ C —CHCHO	92	17i
10	PhCH ——CHCH ₂ OH	4	РҺСН ——СНСНО	88	17j
11	ОН	5		85	18k
12	ОН	4	o o	86	181
13	CH ₂ OH	3	СНО	90	17m
14	t-Bu—CH $_2$ OH	4	t-Bu—CHO	88	17n
15	CN—CH ₂ OH	6	си—Сно	80	17o
16	CH ₃ CHOCCH ₂ CH ₃	3	CH ₃ COCH ₂ CH ₃	87	17p

^aAll products were characterised spectroscopically (1H NMR, IR) and showed physical and spectroscopic data in accordance with their expected structure and by comparison with authentic sample. ^bThe yields refer to isolated products.

General procedure for oxidation of alcohols

An appropriate alcohol (5 mmol) was mixed with bis(chlorine)-1,4-diazabicyclo[2.2.2]octane (5.2 mmol) in a watch glass. The mixture was transferred into a small beaker and placed in a microwave oven (600 W, 180°C) for the indicated time. After completion of the reaction (TLC), ether was added to the reaction mixture and the resulting mixture was washed with solution of 1% HCl. The aqueous layer (1) was separated and the organic layer was washed with 3% sodium bicarbonate solution and water respectively. The organic phase was dried over MgSO₄, filtered and evaporated to dryness under reduced pressure to afford the corresponding carbonyl compound in a pure form.

Regeneration of 1,4-diazabicyclo[2.2.2] octane

The aqueous layer (1) from above procedure was further treated with 10% sodium bicarbonate solution and 1,4-diazabicyclo[2.2.2]octane was extracted with ether (3 \times 10). The ether layer was dried over MgSO₄, and evaporated to give pure 1,4-diazabicyclo[2.2.2]octane (95%) which can be chlorinated and reused several times.

Received 26 January 2006; accepted 28 March 2006 Paper 06/3752

References

- (a) R.A. Sheldon and J.K.Kochi, Metal Catalysed Oxidations of Organic Compounds, Academic Press: New York, 1981; Chap. 6; (b) M. Hudlick, Oxidation in Organic Chemistry; ACS Monographs 186, Washington, DC 1990; (c) Fleming, I. In Comprehensive Organic Synthesis; Trost, B.M.; Ley, S.V., eds.; Pergamon: Oxford, 1991; Vol. 7.
- 2 T. Fey, H. Fischer, S. Bachmann, K. Albert and C. Bolm, J. Org. Chem., 2001, 99, 8154.
- (a) É.J. Correy and J.W. Suggs, Tetrahedron Lett., 1975, 2647;
 (b) G. Piancatteli, A. Scettri and M.D. Auria, Synthesis, 1982, 243;
 (c) A. Van den Eyned, A. Mayence, A. Maquestiau, Tetrahedron Lett., 1992, 48, 463;
 (d) G. Cainelli and G. Cardillo, Chromium Oxidation in Organic Chemistry; Springer: New York, 1984;
 (e) K. Niknam, Asian J. Chem., 2005, 17, 2818.
- (a) A.J. Mancuso, S.L. Huang and D. Swern, J. Org. Chem., 1978, 43, 2480;
 (b) A.J. Mancuso, D.S. Brownfan and D. Swern, J. Org. Chem., 1985, 50, 2198.

- 5 D.B. Dess and J.C. Martin, J. Org. Chem., 1983, 48, 4155.
- 6 M. Hunsen, Tetrahedron Lett., 2005, 46, 1651.
- 7 N. Ahmad, H. Ali and J.E. Van Lier, Tetrahedron Lett., 2005, 46, 253.
- 8 S.E. Martin and A. Garrone, Tetrahedron Lett., 2003, 44, 549.
- 9 F. Shirini, M. Zolfigol and Z. Mollarazi, Synth. Commun., 2005, 35, 1541.
- 10 S. Kobayashi, H. Miyamura and R. Akiyama, J. Am. Chem. Soc., 2005, 127, 9251.
- 11 (a) A.J. Fatiadi, In Organic Synthesis by Oxidation with Metal Compounds; W.J. Mijis and C.R.H.I. De Jong, Eds.; Plenum Press: New York, 1986, pp. 119-260; (b) A.P. Thottumkara and K.V. Thottumkara, Tetrahedron Lett., 2002, 43, 569; (c) M. Pagliaaro, and R. Ciriminna, Tetrahedron Lett., 2001, 42, 4511; (d) J. Hongbing, T. Mizugaki, K. Ebitani and Kaneda, Tetrahedron Lett., 2002, 43, 7179; (e) M. Schultz, R.S. Alder and W. Zierkiewicz, J. Am. Chem. Soc., 2005, 127, 8499; (f) H.B. Ji, D.P. Shi and M. Shao, Tetrahedron Lett., 2005, 46, 3433; (g) M.J. Schultz, S.S. Hamilton and D.R. Jensen, J. Org. Chem., 2005, 70, 3343; (h) M.M. Mojtahedi, A. Sharifi and S. Kaamyabi, J. Chem. Res(S)., 2002, 286
- 12 M. Larhed, C. Mobeg and A. Hallberg, Acc. Chem. Res., 2002, 35, 717.
- 13 P. Lidstrom, J. Tierney, B. Wathey and J. Westman, *Tetrahedron*, 2001, 57, 9225.
- 14 (a) M. Tajbakhsh, M. Ghaemi, S. Sarabi, M. Ghassemzadeh and M.M. Heravi, *Monatsh. Chem.*, 2000, 131, 1213; (b) M. Tajbakhsh, M.M. Lakouraj, A. Fadavi, *Synth. Commun.*, 2004, 34, 1173.
- (a) M. Tajbakhsh, M.M. Heravi, F. Mohannazadeh, S. Sarabi and M. Ghasemzadeh, M.; Monatsh. Chem., 2001, 132, 1229; (b) M.M. Heravi, M. Tajbakhsh, S. Habibzadeh and M. Ghassemzadeh, Phosphorus, Sulfur Silicon Relat. Elem., 2001, 176, 195; (c) R. Hosseinzadeh, M. Tajbakhsh and M. Yazdani Niaki, Tetrahedron Lett., 2002, 43, 9413; (d) M. Tajbakhsh, M.M. Heravi, S. Habibzadeh and M. Ghassemzadeh, J. Chem. Res. (S), 2001, 39; (e) M. Tajbakhsh, I. Moammadpoor-baltork and F. Ramzanian, J. Chem. Res. (S), 2001, 182.
- 16 F.D. Snell and L.S. Ettre, Encyclopedia of Industrial Chemical Analysis, Vol. 14, 1966, pp.370-371.
- (a) Dictionary of Organic Chemistry, Vol. 1, 527; (b) Vol. 1, 752; (c) Vol. 1, 1057; (d) Encyclopedia of Reagents for Organic Synthesis, Vol. 5, 3325; (e) Dictionary of Organic Chemistry, Vol. 4, 4224; (f) Vol. 4, 3742; (g) Vol. 2, 1370; (h) Vol. 3, 2926; (i) Vol. 5, 4784; (j) Vol. 5, 4664; (k) Vol. 3, 3443; (l) Vol. 1, 72; (m) Vol. 4, 3691; (n) Vol. 1, 920; (o) Vol. 2, 1325; (p) Merk index, No. 5945, 870.